3.3.57 \(\int x^2 \sqrt {d+e x^2} (a+b \log (c x^n)) \, dx\) [257]

Optimal. Leaf size=409 \[ -\frac {3 b d n x \sqrt {d+e x^2}}{32 e}-\frac {1}{16} b n x^3 \sqrt {d+e x^2}-\frac {b d^{3/2} n \sqrt {d+e x^2} \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{32 e^{3/2} \sqrt {1+\frac {e x^2}{d}}}-\frac {b d^{3/2} n \sqrt {d+e x^2} \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )^2}{16 e^{3/2} \sqrt {1+\frac {e x^2}{d}}}+\frac {b d^{3/2} n \sqrt {d+e x^2} \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \log \left (1-e^{2 \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}\right )}{8 e^{3/2} \sqrt {1+\frac {e x^2}{d}}}+\frac {d x \sqrt {d+e x^2} \left (a+b \log \left (c x^n\right )\right )}{8 e}+\frac {1}{4} x^3 \sqrt {d+e x^2} \left (a+b \log \left (c x^n\right )\right )-\frac {d^{3/2} \sqrt {d+e x^2} \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \left (a+b \log \left (c x^n\right )\right )}{8 e^{3/2} \sqrt {1+\frac {e x^2}{d}}}+\frac {b d^{3/2} n \sqrt {d+e x^2} \text {Li}_2\left (e^{2 \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}\right )}{16 e^{3/2} \sqrt {1+\frac {e x^2}{d}}} \]

[Out]

-3/32*b*d*n*x*(e*x^2+d)^(1/2)/e-1/16*b*n*x^3*(e*x^2+d)^(1/2)+1/8*d*x*(a+b*ln(c*x^n))*(e*x^2+d)^(1/2)/e+1/4*x^3
*(a+b*ln(c*x^n))*(e*x^2+d)^(1/2)-1/32*b*d^(3/2)*n*arcsinh(x*e^(1/2)/d^(1/2))*(e*x^2+d)^(1/2)/e^(3/2)/(1+e*x^2/
d)^(1/2)-1/16*b*d^(3/2)*n*arcsinh(x*e^(1/2)/d^(1/2))^2*(e*x^2+d)^(1/2)/e^(3/2)/(1+e*x^2/d)^(1/2)+1/8*b*d^(3/2)
*n*arcsinh(x*e^(1/2)/d^(1/2))*ln(1-(x*e^(1/2)/d^(1/2)+(1+e*x^2/d)^(1/2))^2)*(e*x^2+d)^(1/2)/e^(3/2)/(1+e*x^2/d
)^(1/2)-1/8*d^(3/2)*arcsinh(x*e^(1/2)/d^(1/2))*(a+b*ln(c*x^n))*(e*x^2+d)^(1/2)/e^(3/2)/(1+e*x^2/d)^(1/2)+1/16*
b*d^(3/2)*n*polylog(2,(x*e^(1/2)/d^(1/2)+(1+e*x^2/d)^(1/2))^2)*(e*x^2+d)^(1/2)/e^(3/2)/(1+e*x^2/d)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.28, antiderivative size = 410, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 12, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.480, Rules used = {2386, 285, 327, 221, 2392, 396, 201, 5775, 3797, 2221, 2317, 2438} \begin {gather*} \frac {b d^{3/2} n \sqrt {d+e x^2} \text {PolyLog}\left (2,e^{2 \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}\right )}{16 e^{3/2} \sqrt {\frac {e x^2}{d}+1}}-\frac {d^{3/2} \sqrt {d+e x^2} \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \left (a+b \log \left (c x^n\right )\right )}{8 e^{3/2} \sqrt {\frac {e x^2}{d}+1}}+\frac {d x \sqrt {d+e x^2} \left (a+b \log \left (c x^n\right )\right )}{8 e}+\frac {1}{4} x^3 \sqrt {d+e x^2} \left (a+b \log \left (c x^n\right )\right )-\frac {b d^{3/2} n \sqrt {d+e x^2} \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )^2}{16 e^{3/2} \sqrt {\frac {e x^2}{d}+1}}-\frac {b d^{3/2} n \sqrt {d+e x^2} \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{32 e^{3/2} \sqrt {\frac {e x^2}{d}+1}}+\frac {b d^{3/2} n \sqrt {d+e x^2} \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \log \left (1-e^{2 \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}\right )}{8 e^{3/2} \sqrt {\frac {e x^2}{d}+1}}-\frac {b n x \left (d+e x^2\right )^{3/2}}{16 e}-\frac {b d n x \sqrt {d+e x^2}}{32 e} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^2*Sqrt[d + e*x^2]*(a + b*Log[c*x^n]),x]

[Out]

-1/32*(b*d*n*x*Sqrt[d + e*x^2])/e - (b*n*x*(d + e*x^2)^(3/2))/(16*e) - (b*d^(3/2)*n*Sqrt[d + e*x^2]*ArcSinh[(S
qrt[e]*x)/Sqrt[d]])/(32*e^(3/2)*Sqrt[1 + (e*x^2)/d]) - (b*d^(3/2)*n*Sqrt[d + e*x^2]*ArcSinh[(Sqrt[e]*x)/Sqrt[d
]]^2)/(16*e^(3/2)*Sqrt[1 + (e*x^2)/d]) + (b*d^(3/2)*n*Sqrt[d + e*x^2]*ArcSinh[(Sqrt[e]*x)/Sqrt[d]]*Log[1 - E^(
2*ArcSinh[(Sqrt[e]*x)/Sqrt[d]])])/(8*e^(3/2)*Sqrt[1 + (e*x^2)/d]) + (d*x*Sqrt[d + e*x^2]*(a + b*Log[c*x^n]))/(
8*e) + (x^3*Sqrt[d + e*x^2]*(a + b*Log[c*x^n]))/4 - (d^(3/2)*Sqrt[d + e*x^2]*ArcSinh[(Sqrt[e]*x)/Sqrt[d]]*(a +
 b*Log[c*x^n]))/(8*e^(3/2)*Sqrt[1 + (e*x^2)/d]) + (b*d^(3/2)*n*Sqrt[d + e*x^2]*PolyLog[2, E^(2*ArcSinh[(Sqrt[e
]*x)/Sqrt[d]])])/(16*e^(3/2)*Sqrt[1 + (e*x^2)/d])

Rule 201

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[x*((a + b*x^n)^p/(n*p + 1)), x] + Dist[a*n*(p/(n*p + 1)),
 Int[(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && GtQ[p, 0] && (IntegerQ[2*p] || (EqQ[n, 2
] && IntegerQ[4*p]) || (EqQ[n, 2] && IntegerQ[3*p]) || LtQ[Denominator[p + 1/n], Denominator[p]])

Rule 221

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt[a])]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rule 285

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a + b*x^n)^p/(c*(m + n
*p + 1))), x] + Dist[a*n*(p/(m + n*p + 1)), Int[(c*x)^m*(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b, c, m}, x]
&& IGtQ[n, 0] && GtQ[p, 0] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 327

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^n
)^(p + 1)/(b*(m + n*p + 1))), x] - Dist[a*c^n*((m - n + 1)/(b*(m + n*p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 396

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[d*x*((a + b*x^n)^(p + 1)/(b*(n*(
p + 1) + 1))), x] - Dist[(a*d - b*c*(n*(p + 1) + 1))/(b*(n*(p + 1) + 1)), Int[(a + b*x^n)^p, x], x] /; FreeQ[{
a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && NeQ[n*(p + 1) + 1, 0]

Rule 2221

Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/((a_) + (b_.)*((F_)^((g_.)*((e_.) +
 (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[((c + d*x)^m/(b*f*g*n*Log[F]))*Log[1 + b*((F^(g*(e + f*x)))^n/a)], x]
 - Dist[d*(m/(b*f*g*n*Log[F])), Int[(c + d*x)^(m - 1)*Log[1 + b*((F^(g*(e + f*x)))^n/a)], x], x] /; FreeQ[{F,
a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]

Rule 2317

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2386

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Dist[d^IntPart[q
]*((d + e*x^2)^FracPart[q]/(1 + (e/d)*x^2)^FracPart[q]), Int[x^m*(1 + (e/d)*x^2)^q*(a + b*Log[c*x^n]), x], x]
/; FreeQ[{a, b, c, d, e, n}, x] && IntegerQ[m/2] && IntegerQ[q - 1/2] &&  !(LtQ[m + 2*q, -2] || GtQ[d, 0])

Rule 2392

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol] :> Wit
h[{u = IntHide[(f*x)^m*(d + e*x^r)^q, x]}, Dist[a + b*Log[c*x^n], u, x] - Dist[b*n, Int[SimplifyIntegrand[u/x,
 x], x], x] /; ((EqQ[r, 1] || EqQ[r, 2]) && IntegerQ[m] && IntegerQ[q - 1/2]) || InverseFunctionFreeQ[u, x]] /
; FreeQ[{a, b, c, d, e, f, m, n, q, r}, x] && IntegerQ[2*q] && ((IntegerQ[m] && IntegerQ[r]) || IGtQ[q, 0])

Rule 2438

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2, (-c)*e*x^n]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 3797

Int[((c_.) + (d_.)*(x_))^(m_.)*tan[(e_.) + Pi*(k_.) + (Complex[0, fz_])*(f_.)*(x_)], x_Symbol] :> Simp[(-I)*((
c + d*x)^(m + 1)/(d*(m + 1))), x] + Dist[2*I, Int[((c + d*x)^m*(E^(2*((-I)*e + f*fz*x))/(1 + E^(2*((-I)*e + f*
fz*x))/E^(2*I*k*Pi))))/E^(2*I*k*Pi), x], x] /; FreeQ[{c, d, e, f, fz}, x] && IntegerQ[4*k] && IGtQ[m, 0]

Rule 5775

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)/(x_), x_Symbol] :> Dist[1/b, Subst[Int[x^n*Coth[-a/b + x/b], x],
 x, a + b*ArcSinh[c*x]], x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0]

Rubi steps

\begin {align*} \int x^2 \sqrt {d+e x^2} \left (a+b \log \left (c x^n\right )\right ) \, dx &=\frac {\sqrt {d+e x^2} \int x^2 \sqrt {1+\frac {e x^2}{d}} \left (a+b \log \left (c x^n\right )\right ) \, dx}{\sqrt {1+\frac {e x^2}{d}}}\\ &=\frac {d x \sqrt {d+e x^2} \left (a+b \log \left (c x^n\right )\right )}{8 e}+\frac {1}{4} x^3 \sqrt {d+e x^2} \left (a+b \log \left (c x^n\right )\right )-\frac {d^{3/2} \sqrt {d+e x^2} \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \left (a+b \log \left (c x^n\right )\right )}{8 e^{3/2} \sqrt {1+\frac {e x^2}{d}}}-\frac {\left (b n \sqrt {d+e x^2}\right ) \int \left (\frac {\left (d+2 e x^2\right ) \sqrt {1+\frac {e x^2}{d}}}{8 e}-\frac {d^{3/2} \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{8 e^{3/2} x}\right ) \, dx}{\sqrt {1+\frac {e x^2}{d}}}\\ &=\frac {d x \sqrt {d+e x^2} \left (a+b \log \left (c x^n\right )\right )}{8 e}+\frac {1}{4} x^3 \sqrt {d+e x^2} \left (a+b \log \left (c x^n\right )\right )-\frac {d^{3/2} \sqrt {d+e x^2} \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \left (a+b \log \left (c x^n\right )\right )}{8 e^{3/2} \sqrt {1+\frac {e x^2}{d}}}+\frac {\left (b d^{3/2} n \sqrt {d+e x^2}\right ) \int \frac {\sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{x} \, dx}{8 e^{3/2} \sqrt {1+\frac {e x^2}{d}}}-\frac {\left (b n \sqrt {d+e x^2}\right ) \int \left (d+2 e x^2\right ) \sqrt {1+\frac {e x^2}{d}} \, dx}{8 e \sqrt {1+\frac {e x^2}{d}}}\\ &=-\frac {b n x \left (d+e x^2\right )^{3/2}}{16 e}+\frac {d x \sqrt {d+e x^2} \left (a+b \log \left (c x^n\right )\right )}{8 e}+\frac {1}{4} x^3 \sqrt {d+e x^2} \left (a+b \log \left (c x^n\right )\right )-\frac {d^{3/2} \sqrt {d+e x^2} \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \left (a+b \log \left (c x^n\right )\right )}{8 e^{3/2} \sqrt {1+\frac {e x^2}{d}}}+\frac {\left (b d^{3/2} n \sqrt {d+e x^2}\right ) \text {Subst}\left (\int x \coth (x) \, dx,x,\sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )\right )}{8 e^{3/2} \sqrt {1+\frac {e x^2}{d}}}-\frac {\left (b d n \sqrt {d+e x^2}\right ) \int \sqrt {1+\frac {e x^2}{d}} \, dx}{16 e \sqrt {1+\frac {e x^2}{d}}}\\ &=-\frac {b d n x \sqrt {d+e x^2}}{32 e}-\frac {b n x \left (d+e x^2\right )^{3/2}}{16 e}-\frac {b d^{3/2} n \sqrt {d+e x^2} \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )^2}{16 e^{3/2} \sqrt {1+\frac {e x^2}{d}}}+\frac {d x \sqrt {d+e x^2} \left (a+b \log \left (c x^n\right )\right )}{8 e}+\frac {1}{4} x^3 \sqrt {d+e x^2} \left (a+b \log \left (c x^n\right )\right )-\frac {d^{3/2} \sqrt {d+e x^2} \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \left (a+b \log \left (c x^n\right )\right )}{8 e^{3/2} \sqrt {1+\frac {e x^2}{d}}}-\frac {\left (b d^{3/2} n \sqrt {d+e x^2}\right ) \text {Subst}\left (\int \frac {e^{2 x} x}{1-e^{2 x}} \, dx,x,\sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )\right )}{4 e^{3/2} \sqrt {1+\frac {e x^2}{d}}}-\frac {\left (b d n \sqrt {d+e x^2}\right ) \int \frac {1}{\sqrt {1+\frac {e x^2}{d}}} \, dx}{32 e \sqrt {1+\frac {e x^2}{d}}}\\ &=-\frac {b d n x \sqrt {d+e x^2}}{32 e}-\frac {b n x \left (d+e x^2\right )^{3/2}}{16 e}-\frac {b d^{3/2} n \sqrt {d+e x^2} \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{32 e^{3/2} \sqrt {1+\frac {e x^2}{d}}}-\frac {b d^{3/2} n \sqrt {d+e x^2} \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )^2}{16 e^{3/2} \sqrt {1+\frac {e x^2}{d}}}+\frac {b d^{3/2} n \sqrt {d+e x^2} \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \log \left (1-e^{2 \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}\right )}{8 e^{3/2} \sqrt {1+\frac {e x^2}{d}}}+\frac {d x \sqrt {d+e x^2} \left (a+b \log \left (c x^n\right )\right )}{8 e}+\frac {1}{4} x^3 \sqrt {d+e x^2} \left (a+b \log \left (c x^n\right )\right )-\frac {d^{3/2} \sqrt {d+e x^2} \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \left (a+b \log \left (c x^n\right )\right )}{8 e^{3/2} \sqrt {1+\frac {e x^2}{d}}}-\frac {\left (b d^{3/2} n \sqrt {d+e x^2}\right ) \text {Subst}\left (\int \log \left (1-e^{2 x}\right ) \, dx,x,\sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )\right )}{8 e^{3/2} \sqrt {1+\frac {e x^2}{d}}}\\ &=-\frac {b d n x \sqrt {d+e x^2}}{32 e}-\frac {b n x \left (d+e x^2\right )^{3/2}}{16 e}-\frac {b d^{3/2} n \sqrt {d+e x^2} \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{32 e^{3/2} \sqrt {1+\frac {e x^2}{d}}}-\frac {b d^{3/2} n \sqrt {d+e x^2} \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )^2}{16 e^{3/2} \sqrt {1+\frac {e x^2}{d}}}+\frac {b d^{3/2} n \sqrt {d+e x^2} \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \log \left (1-e^{2 \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}\right )}{8 e^{3/2} \sqrt {1+\frac {e x^2}{d}}}+\frac {d x \sqrt {d+e x^2} \left (a+b \log \left (c x^n\right )\right )}{8 e}+\frac {1}{4} x^3 \sqrt {d+e x^2} \left (a+b \log \left (c x^n\right )\right )-\frac {d^{3/2} \sqrt {d+e x^2} \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \left (a+b \log \left (c x^n\right )\right )}{8 e^{3/2} \sqrt {1+\frac {e x^2}{d}}}-\frac {\left (b d^{3/2} n \sqrt {d+e x^2}\right ) \text {Subst}\left (\int \frac {\log (1-x)}{x} \, dx,x,e^{2 \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}\right )}{16 e^{3/2} \sqrt {1+\frac {e x^2}{d}}}\\ &=-\frac {b d n x \sqrt {d+e x^2}}{32 e}-\frac {b n x \left (d+e x^2\right )^{3/2}}{16 e}-\frac {b d^{3/2} n \sqrt {d+e x^2} \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{32 e^{3/2} \sqrt {1+\frac {e x^2}{d}}}-\frac {b d^{3/2} n \sqrt {d+e x^2} \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )^2}{16 e^{3/2} \sqrt {1+\frac {e x^2}{d}}}+\frac {b d^{3/2} n \sqrt {d+e x^2} \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \log \left (1-e^{2 \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}\right )}{8 e^{3/2} \sqrt {1+\frac {e x^2}{d}}}+\frac {d x \sqrt {d+e x^2} \left (a+b \log \left (c x^n\right )\right )}{8 e}+\frac {1}{4} x^3 \sqrt {d+e x^2} \left (a+b \log \left (c x^n\right )\right )-\frac {d^{3/2} \sqrt {d+e x^2} \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \left (a+b \log \left (c x^n\right )\right )}{8 e^{3/2} \sqrt {1+\frac {e x^2}{d}}}+\frac {b d^{3/2} n \sqrt {d+e x^2} \text {Li}_2\left (e^{2 \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}\right )}{16 e^{3/2} \sqrt {1+\frac {e x^2}{d}}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 0.27, size = 250, normalized size = 0.61 \begin {gather*} \frac {-8 b e^{3/2} n x^3 \sqrt {d+e x^2} \, _3F_2\left (-\frac {1}{2},\frac {3}{2},\frac {3}{2};\frac {5}{2},\frac {5}{2};-\frac {e x^2}{d}\right )-9 b d^{3/2} n \sqrt {d+e x^2} \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \log (x)+9 \sqrt {1+\frac {e x^2}{d}} \left (a \sqrt {e} x \sqrt {d+e x^2} \left (d+2 e x^2\right )+d^2 (-a+b n \log (x)) \log \left (e x+\sqrt {e} \sqrt {d+e x^2}\right )+b \log \left (c x^n\right ) \left (\sqrt {e} x \sqrt {d+e x^2} \left (d+2 e x^2\right )-d^2 \log \left (e x+\sqrt {e} \sqrt {d+e x^2}\right )\right )\right )}{72 e^{3/2} \sqrt {1+\frac {e x^2}{d}}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^2*Sqrt[d + e*x^2]*(a + b*Log[c*x^n]),x]

[Out]

(-8*b*e^(3/2)*n*x^3*Sqrt[d + e*x^2]*HypergeometricPFQ[{-1/2, 3/2, 3/2}, {5/2, 5/2}, -((e*x^2)/d)] - 9*b*d^(3/2
)*n*Sqrt[d + e*x^2]*ArcSinh[(Sqrt[e]*x)/Sqrt[d]]*Log[x] + 9*Sqrt[1 + (e*x^2)/d]*(a*Sqrt[e]*x*Sqrt[d + e*x^2]*(
d + 2*e*x^2) + d^2*(-a + b*n*Log[x])*Log[e*x + Sqrt[e]*Sqrt[d + e*x^2]] + b*Log[c*x^n]*(Sqrt[e]*x*Sqrt[d + e*x
^2]*(d + 2*e*x^2) - d^2*Log[e*x + Sqrt[e]*Sqrt[d + e*x^2]])))/(72*e^(3/2)*Sqrt[1 + (e*x^2)/d])

________________________________________________________________________________________

Maple [F]
time = 0.02, size = 0, normalized size = 0.00 \[\int x^{2} \left (a +b \ln \left (c \,x^{n}\right )\right ) \sqrt {e \,x^{2}+d}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(a+b*ln(c*x^n))*(e*x^2+d)^(1/2),x)

[Out]

int(x^2*(a+b*ln(c*x^n))*(e*x^2+d)^(1/2),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(a+b*log(c*x^n))*(e*x^2+d)^(1/2),x, algorithm="maxima")

[Out]

-1/8*(d^2*arcsinh(x*e^(1/2)/sqrt(d))*e^(-3/2) - 2*(x^2*e + d)^(3/2)*x*e^(-1) + sqrt(x^2*e + d)*d*x*e^(-1))*a +
 b*integrate(sqrt(x^2*e + d)*(x^2*log(c) + x^2*log(x^n)), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(a+b*log(c*x^n))*(e*x^2+d)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(x^2*e + d)*b*x^2*log(c*x^n) + sqrt(x^2*e + d)*a*x^2, x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int x^{2} \left (a + b \log {\left (c x^{n} \right )}\right ) \sqrt {d + e x^{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*(a+b*ln(c*x**n))*(e*x**2+d)**(1/2),x)

[Out]

Integral(x**2*(a + b*log(c*x**n))*sqrt(d + e*x**2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(a+b*log(c*x^n))*(e*x^2+d)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(x^2*e + d)*(b*log(c*x^n) + a)*x^2, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int x^2\,\sqrt {e\,x^2+d}\,\left (a+b\,\ln \left (c\,x^n\right )\right ) \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(d + e*x^2)^(1/2)*(a + b*log(c*x^n)),x)

[Out]

int(x^2*(d + e*x^2)^(1/2)*(a + b*log(c*x^n)), x)

________________________________________________________________________________________